Fundamentals of cutting and surface generation (Autumn/3)
4 hours per week; 14 weeks / 5th semester: 28C/14L; ECTS credits: 4
The fundamentals of cutting, the physics and mechanics of the cutting process, generating theoretical and real surfaces on machine tools (elements regarding the structure of the technological system, the role of its components in the cutting process, the chip formation mechanism, plastic deformation phenomena, the heat released during the cutting process, friction, wear and lubrication on cutting, specific cutting forces and moments), theoretical concepts for generating surfaces on machine tools, methods of obtaining surfaces by backing-off, rolling, generating involute and complex surfaces.

Industrial management (Autumn/3)
4 hours per week; 14 weeks / 5th semester: 28C/14S; ECTS credits: 4
The course presents management processes and relationships within an organization, built in such a way as to achieve business success. It treats the systemic management issue, the management system being structured into five subsystems: organizational subsystem, information subsystem, decision subsystem, subsystem management methods and techniques management methods, as well as other components management subsystem of the management system. Each substitute is shown in contemporary approach, specifying the functions, activities and tasks in achieving the organization’s strategic and tactical management objectives using various methods.

Thermal treatments (Autumn/3)
3 hours per week; 14 weeks / 5th semester: 28C/14L; ECTS credits: 3

Cutting operations and cutting tools (Autumn/3)
3 hours per week; 14 weeks / 5th semester: 28C/14L/14P; ECTS credits: 5
The role of the cutting tools in machine manufacturing; trends in their development; destination, structure and classification of the cutting tools; main types of the cutting tools; elements of calculation and construction for lathe cutting tool; broaches, drilling holes tools, mills, gear grinding tools and for combined tools.

Plastics and composites pieces manufacture (Autumn/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
Composite materials; Composite materials matrices; Metal and plastic composites solidification; Composite material with non-metal matrix; Composite and plastics materials properties; Plastic and composites quality control.

USV.FIM.II.DS.06.09
Experimental techniques (Spring/3)
3 hours per week; 14 weeks / 2nd semester: 28C/14L; ECTS credits: 3
General problems on research. Getting metrology. Measurement experiment results. Classic and modern experiments; Classical methods for planning experiments; Complete factorial plans; Experimental plans and mathematical modeling of the studied phenomenon; Modern methods of experimental planning; Analysis of results variance; Conclusions on the study of a phenomenon / product through experimental plans method; Acquisition of data for the study of industrial phenomenon; Experimental plans and industrial practice; Roughness measurement and dependency factors or Length measurement and dependency factors; Mathematical modeling of practical applications; Conclusions.

USV.FIM.II.DD.06.10
Machine Elements 2 (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
This is the second part of machine elements course, concerning basics on classical design of mechanical parts, such as statics and dynamics of mechanical elements, failure criteria, tribology elements, reliability, mechanical choice criteria and so on. Also elements of mechanical transmissions construction and design (gears, belts transmissions, chain and belts variators, friction variators, chain transmission) are also presented.

USV.FIM.II.DD.06.11
Machine Elements 2 - Project (Spring/3)
2 hours per week; 14 weeks / 6th semester:28P; ECTS credits: 2
Students must design a two stage (belts and gears) mechanical transmission system. Starting from a given material, several steps are followed so that the gear outputs an imposed torque and speed. The designed speed reducer must use single stage spur gears reducer and an external V belt transmission. The belt transmission, gears geometry and shafts dimensions are calculated. The shafts resistance to fatigue, vibration and strain are verified. All the gear’s transmission elements must be calculated. The reducer gear housing must be designed and the thermal regime is verified. The projects must contain technical drawings for V belt pulleys, spur gears, shafts, gear housing, as well as for the speed reducer assembly.

USV.FIM.II. DS. 06.12
Processing by cold plastic deformation (1) (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
The structure of metals and alloys and its influence on plasticity; plastic deformation of single crystals and polycrystalline aggregates; plasticity conditions; the behaviour of materials at plastic deformation; cold plastic deformation laws; slide theory; material processing by cutting.

USV.FIM.II.DD.06.13
Machine Tools (1) (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
Objectives of course are to provide students with an understanding of Hydraulics of machine tools: component parts; speed adjustment using resistive and volume components; hidraulic circuits for principal structure work; hidraulic circuits for auxiliary structure; types and structures of leather, milling machines, boring machines, planing machines, slotting machines, broaching machines, grinding machines; gear machines.

USV.FIM.II.DD.06.15
Mechanical vibrations (Spring/3)
3 hours per week, 14 weeks/6-th semester: 28C/14L, ECTS credits: 3

USV.FIM.II.DS.06.16
Computer aided design of products – CAD systems (Spring/3)
2 hours per week;14 weeks /6th semester: 28L;ECTS credits: 2
Autodesk Inventor overview, Creating 2D sketches, Creating solids from 2D sketches, Parametric solids editing, Creating swept type bodies, Creating loft-type bodies, Creating connections and edges, Creating holes and threads, Creating parts with thin walls; Adding components in assembly, Creating parts in the ensemble, Identifying the parts in the assembly, Controls and motion analysis, The interference determination.

USV.FIM.II.DID.06.17
Practical training (Spring/3)
90 hours 3 weeks / 6th semester; ECTS credits: 4
Practical activities enable the student to put into practice the theory and/or skills they are studying, often in a practical environment: field work, work placements, presentations, working in laboratories and workshops. Practical sessions allow learners to: demonstrate and extend their skills; collect specimens; carry out experiments; demonstrate their subject knowledge; apply theory in practice; demonstrate their awareness in applying health and safety regulations / Practical activities on specific aspects on industrial engineering in different institutions/companies. Solving specific problems related with industrial engineering.

Machine Manufacturing Technologies 4 th year

USV.FIM.II.DD.07.01
Quality Management (Autumn/4)
3 hours per week;14 weeks /8th semester: 28C/14S; ECTS credits: 4
The first part of the course deals with issues concerning definition, characteristics and quality indicators. There are also
summarized information referring to the structure of the quality management system (QMS), to its documentation, the related legislation that underlies the design, the implementation, the certification and the improvement of QMS. At the end of the course there can be found features of service quality management, quality management principles, elements of auditing quality and quality tools.

USV.FIM.II.DS.07.02
Machine manufacturing technology 2 (Autumn/4)
4 hours per week; 14 weeks / 7th semester: 28C/28L; ECTS credits: 4
Drilling technologies, Grinding technologies, Super finishing technologies, Tapping technologies, Manufacturing Technologies on aggregate machine-tools. Shaft class part manufacturing technology, Gear wheel manufacturing-technology, Technology for casing-class part manufacturing, Lever-class part manufacturing technology, Bushing-class part manufacturing technology, Machine assembly process

USV.FIM.II.DS.07.03
Machine manufacturing technology 3- project (Autumn/4)
2 hours per week; 14 weeks /8th semester:28P; ECTS credits: 2
Product design analysis and workpiece material selection, Machining operation sequence planning, The calculation of minimum material stock, Calculation of machining parameters, Calculation of machining time, Calculation of the technical and economical process parameters, Logistics and technical documentation

USV.FIM.II.DS.07.04
Processing by cold plastic deformation 2 (Autumn/4)
4 hours per week; 14 weeks / 7th semester: 28C/14L; ECTS credits: 4
Processing by cold forming processes 2 shows cold bending, stamping, forming, volume pressing and assembly processes. In every process is studied the tension and the strain state applied on the workpiece material which is being processed, plus the calculus relations of power parameters. Also presented are technological calculations and factors that influence the quality and precision of the machined parts under these procedures. With every processing procedure, the required processing equipment is presented.

USV.FIM.II.DS.07.05
Technological devices (Autumn/4)
2 hours per week; 14 weeks / 7th semester: 28C/14L; ECTS credits: 4
The technological device (TD) – general facts, The bases of conception of TD, Construction of guidance elements, GE Construction of fasteners in devices F, Centering mechanism CM, Self-centered fastening mechanisms, Providing with devices of the technological system of processing. The technological system of measurement and control

USV.FIM.II.DS.08.07
Robotization of technological processes (Spring/4)
4 hours per week; 14 weeks /7th semester: 28C/28L; ECTS credits 3

USV.FIM.II.DS.08.08
Computer assisted manufacturing – CAM systems (Spring/4)
4 hours per week; 14 weeks / 8th semester: 28C/28P; ECTS credits: 3
Short history of computer aided manufacturing technologies, Computer assisted manufacturing technologies, Computer process control, Fundaments of computer assisted part of programming, Modelling and analysis, Direct numerical control, Computer supervision of manufacturing technologies, Operation level production systems, Computer assisted group technologies, Manufacturing cell design

USV.FIM.II.DS.08.09
Processing by cold plastic deformation (3) – project (Spring/4)
2 hours per week; 14 weeks / 8th semester:28P; ECTS credits: 2
Work-piece analysis; determination of the shape and dimensions of plan work-piece; analysis of division of the semi-finished product. determination of performance technology, calculation of forces and of the pressure center; design mould; instructions for installation, maintenance and operation; setting of standard time; calculation of production cost; labour protection instructions

USV.FIM.II.DS.08.10
Technological devices - project (Spring/4)
2 hour per week; 14 weeks / 7th semester:28P; ECTS credits: 2
Technological studies of the manufacturing workpiece; Establishing the workpiece orientation scheme; Establishing a scheme for fixing the workpiece; Establishing the clamping mechanism; Establishing the principle scheme of the device; Design the device assembly; Organological calculations and finalizing the drawings; Technical-economic explanatory memorandum; The device quality documents.

USV.FIM.II.DS.08.11
Researching and elaborating graduation paper (Spring/4)
2 hours per week; 14 weeks / 8th semester 56P; ECTS credits: 4
Analyzing the current state of the themes and existing solutions; Describing the new proposed solutions and the optimal variant; Justifying the chosen solution through organological, technological, electrical, electronic, hydraulic, or thermal calculations; Technical-economical assessment; Aspects regarding the development, installation, maintenance and exploiting of the equipment or device (if applicable)

USV.FIM.II.DS.07.13
Reliability and maintenance (Spring/4)
3 hours per week; 14 weeks / 7th semester: 28C/28S; ECTS credits: 4
This course familiarizes the students with the concept of reliability, maintainability and availability and their importance when dealing with the conception and exploitation of machine-tools and other technical equipments. It presents the reliability, maintainability and availability concepts, elements of probability theory and its application in reliability, reliability and reliability characteristics, reliability tests, technical issues of reliability theory, maintainability and maintainability characteristics, menenace concept and issues, availability and availability characteristics, etc…
Faculty of Mechanical Engineering
Mechatronics and Management

<table>
<thead>
<tr>
<th>Field of study</th>
<th>Mechatronics and Robotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the educational</td>
<td>Mechatronics</td>
</tr>
<tr>
<td>program</td>
<td>Undergraduate</td>
</tr>
</tbody>
</table>

MECHATRONICS 1st year

USV.FIM.MR.DF.01.01 Mathematical analysis (Autumn/1) 4 hours per week; 14 weeks / 1st semester; 28C/28S; ECTS credits: 5
Basics of calculus: infinite series, differentiation and partial derivatives of functions of several variables, applications of differentiation, multiple integrals, line integrals, surface integrals, differential equations of first order.

USV.FIM.MR.DF.01.02 Algebra, Analytical and Differential Geometry (Autumn/1) 4 hours per week; 14 weeks / 1st semester; 28C/28S; ECTS credits: 5
The course presents the most important concepts, results and mathematical methods in algebra, analytical and differential geometry useful in the perception of physical phenomena and other mathematical courses. An introduction in linear algebra (vector spaces, linear transformations, eigenvalues, quadratic forms, Euclidian spaces), analytical geometry in two or three dimensions, applications of calculus to the study of the geometry of curves and surfaces in Euclidean space.

USV.FIM.MR.DD.01.03 Science and Engineering of Materials (Autumn/1) 3 hours per week; 14 weeks / 1st semester; 28C/14L; ECTS credits: 3

USV.FIM.MR.DF.01.04 Applied Informatics (Autumn/1) 4 hours per week; 14 weeks / 1st semester; 28C/28L; ECTS credits: 5
Operating Systems, architecture of the computer, the main aspects of Office package, the main concept of the algorithms and programming.

USV.FIM.MR.DF.01.05 Chemistry (Autumn/1) 3 hours per week; 14 weeks / 1st semester; 28C/14L; ECTS credits: 3
Introduction to Chemistry: definition, chemistry classifications, atom structure, Chemical bonds, General properties of substances (physical, mechanical, chemical, electrical and magnetic) solutions and disperse systems, industrial water, electrochemistry; electrolysis and laws of electrolysis, the chemical Power Sources, Corrosion and anticorrosive protection of metals and alloys, fuels and lubricants.

USV.FIM.MR.DF.01.06 Computer-aided design 1 (Autumn/1) 3 hours per week; 14 weeks / 1st semester; 28C/14L; ECTS credits: 4
The objectives of this discipline are to provide students a clearer picture of bodies in space through a 2D representation using the projection method and vice versa. Descriptive geometry is a science of the drawing deals with the following main topics: Orthographic drawing; Projection systems; Dihedral and trihedral representation of the point, line and plane; Traces of straight line and plane; Straight line and plane in particular positions; Relative position two straight lines; Intersection between lines and/or planes; Folding line and rotation methods; True length of lines; Measurement of angles; Geometric representation of a prism, pyramid, cone and cylinder; Intersections of polyhedrons with lines and planes; Development drawing. Sections through a pyramid, cone cylinder and sphere.

USV.FIM.MR.DC.01.07 General economics (Autumn/1) 2 hours per week; 14 weeks / 1st semester; 28C; ECTS credits: 2

USV.FIM.MR.DC.01.08 Physical education (Autumn/1)
1 hour per week; 14 weeks /1st semester: 14S; ECTS credits: 2
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using specific means of health education and general harmonious physical development and training of athletic exercises of the body to maintain a sustained effort

USV.FIM.MR.DC.01.09
English 1 (Autumn/1)
2 hour per week, 28S: 14 weeks/ 1th semester, ECTS credits: 2
Multiple general assessment test; An overview of main grammar issues, based on TOEFL and Cambridge tests - vocabulary reminder (at least 14 separate seminars); Model Test 5, TOEFL Essential English; Structure and written expression; Vocabulary and Reading Comprehension (False friends approach); TOEFL Essential English 6 – transition to technical terms; TOEFL 7 – Tenses; Science and Technology; The Importance of the Research Theorist; The impact of technology on everyday life

USV.FIM.MR.DC.02.10
Mechanics (Spring/1)
5 hours per week, 28C/28S/14L: 14 weeks/ 2nd semester, ECTS credits 6
Vectors; Statics of particles; Equivalent systems of forces; Equilibrium of rigid bodies; Friction; Centers of gravity; Moments of inertia; Kinematics of particles; Relative motion; Kinematics of rigid bodies; Dynamics of particles; Dynamics of rigid bodies

USV.FIM.MR.DF.02.12
Physics (Spring 1)
4 hours per week; 14 weeks/2nd semester; 28C/28L; ECTS credits: 4
Overview of the main natural phenomena in terms of: mechanics, electromagnetism, optics, atomic physics and, quantum mechanics. Each domain shows the student’s theoretical and experimental method to understand the main phenomena for the mechanical engineer.

USV.FIM.MR.DF.02.13
Numerical Methods (Spring/1)
4 hours per week, 28C/28L: 14 weeks/ 4th semester, ECTS credits 5
The course elaborates on the following main topics: basic notions in error theory, algorithms and representation of algorithms, numerical methods for solving algebraic and transcendental equations, numerical solution of systems of linear equations, numerical approximation of real functions, Lagrange interpolation, Newton interpolation polynomial, spline interpolation, regression approximation, derivation and numerical integration, numerical solution of differential equations, experimental data processing, implementation of algorithms in Mathcad.

USV.FIM.MR.DC.02.14
Communication (Spring/1)
2 hours per week; 14 weeks /1st semester: 28S; ECTS credits: 2
Objectives of effective Communication; Barriers in Communication; Metacommunication - nonverbal communication; Message planning: Intra C, inter C, group C. and mass C; Communication as a transactional process; Negotiation and manipulative techniques; The interview, the CV/resume; Frequent mistakes in today’s vernacular as a result of borrowings

USV.FIM.MR.DF.02.15
Computer - aided design 2 (Spring/2)
5 hours per week; 14 weeks / 2nd semester: 28C/28L.; ECTS credits: 5
Drawing elements, Types of drawings, Projection, Sectioning, Dimensioning, Detail drawing, Assembly drawing

USV.FIM.MR.DC.02.16
Physical education 2 (Spring/1)
1 hour per week, 14S: 14 weeks/ 2nd semester, ECTS credits 2
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using specific means of health education and general harmonious physical development and training of athletic exercises of the body to maintain a sustained effort

USV.FIM.MR.DC.02.17
Foreign language/English (Spring/1)
2 hours per week; 14 weeks /2nd semester: 28; ECTS credits: 2

MECHATRONICS 2nd year

USV.FIM.MR.DF.03.01
Special Mathematics (Autumn/2)
4 hours per week; 14 weeks/3rd semester: 28C/28S; ECTS credits 4

USV.FIM.MR.DD.03.02
Strength of materials 1 (Autumn/2)
5 hours per week; 14 weeks /3th semester: 28C/28S/14L; ECTS credits: 4

USV.FIM.MR.DD.03.03
Mechanisms and machine elements 1 (Autumn/2)
5 hours per week; 14 weeks /3th semester: 28C/28S/14L; ECTS credits: 6
Mobility; degree of freedom, classification of mechanisms; planar, spherical, and spatial mechanisms; positional, velocity, and acceleration analysis; lower joint mechanisms vectorial loop method for planar kinematics; Hartenberg-Denavit convention; kinematics of spatial linkages; cam mechanisms; displacements diagram, characteristic geometrical parameters; cam profile tracing; pressure angle; minimum radius-of-
curvature; spur gears, fundamental law of toothed gearing; the manufacture of gear teeth; interference and undercutting; contact ratio; helical gears, contact of helical gear teeth; herringbone gears; crossed-axis helical gear; bevel gears; crown and face gears; hypoid gears; basics of worm and worm gears; mechanisms train.

USV.FIM.MR.DD.03.04
Tolerances and dimensional control (Autumn/2)
3 hours per week; 14 weeks /3rd semester: 28C/14L; ECTS credits: 4
This course familiarizes the students with the prescription and control of the dimensional and geometrical precision of the machine elements. It presents the dimensional and geometrical precision, dimensions’ chains, basic notions concerning the dimensional and geometrical measurements and control, statistical control methods.

USV.FIM.MR.DS.03.05
Materials Technology (Autumn/2)
3 hours per week; 14 weeks/3rd semester: 28C/14L; ECTS credits: 4
Technological process; Alloy casting. Materials plastic deformation; Metallic materials welding; Cutting metal materials by thermal processes. Ceramic material processing technologies; Plastics processing technologies; Composite materials manufacturing technology; Nonconventional technologies.

USV.FIM.MR.DC.03.08
Physical education and sport 3 (Autumn/2)
1 hour per week, 14S: 14 weeks/ 3rd semester, ECTS credits: 2
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using specific means of health education and general harmonious physical development and training of athletic exercises of the body to maintain a sustained effort

USV.FIM.MR.DF.04.09
Mechanisms and machine elements (Spring/2)
2 hours per week, 14 weeks/4-th semester: 28P, ECTS credits: 2
Project theme presentation, requirements and references. Structural analysis and graphical-analytical kinematics analysis for a linkage mechanism. Kinematical analysis of mechanisms with lower pairs using vector contour method. Kinetics-static analysis for lower pair mechanism. Design of a mechanism with rotating cam and translational follower with imposed law of motion. Cam’s profile tracing using computer.

USV.FIM.MR.DD.04.10
Strength of materials 2 (Spring/2)
6 hours per week; 14 weeks /4th semester: 28C/28S/28L; ECTS credits: 5

USV.FIM. MR.DD.04.11
Thermotechnics (Spring/2)
6 hours per week 28C/28S/28L: 14 weeks/4th semester, ECTS credits 5

USV.FIM.MR.DID.04.12
Fluid Mechanics (Spring/2)
5 hours per week 28C/14S/28L: 14 weeks/4th semester, ECTS credits 5

USV.FIM.MR.DD.04.13
Electrotechnics and electrical machines (Spring/2)
4 hours per week; 14 weeks /4th semester: 28C/14L; ECTS credits: 4
Periodic electrical signals, Electrical circuits, Laws, theorems and methods of analysis of electrical circuits, Magnetic circuits, Electrical circuit analysis, Electromagnetic waves, Asynchronous electric machine, DC electric machine, Synchronous electric machine.

USV.FIM.MR.DD.04.14
Electronics (Spring/2)
3 hours per week; 14 weeks /4th semester: 28C/14L; ECTS credits: 3
Introduction in Electronics; Concepts of semiconductor physics; Pn junction; Semiconductor diodes; Types of diodes; Bipolar transistor; Field Effect Transistors; MOS transistor; Other devices with junctions; Optoelectronic semiconductor devices; Regime of switching semiconductor devices; Diode Circuits; Amplifiers; Reaction in amplifiers; Harmonic oscillators

USV.FIM. MR.DC.04.15
Physical education 4 (Spring/2)
1 hour per week, 14S: 14 weeks/ 4th semester, ECTS credits 1
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using specific means of health education and general harmonious physical development and training of athletic exercises of the body to maintain a sustained effort

USV.FIM. MR.DD.04.16
Practical training (Spring/2)
90 hours; 4th semester; ECTS credits: 4
Safety; Internship on vehicle mechatronics
MECHATRONICS 3rd year

USV.FIM.MR.DD.05.01
Data acquisition and virtual instrumentation (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
Data acquisition denotes a branch of engineering that deals with collecting information from a number of sources numerical and/or analog, converting the data into a digital form, processing, storage and transmission of it, for example to a computer. Data processing may consist of simple operations, such as comparisons, up to complicated mathematical processing (integration, differentiation, mediation, Fourier transforms, etc.). In order to control a physical process is necessary to extract information about its development, using transducers. The electrical signal output from the transducer is converted into an electrical signal with different parameters (current, voltage, etc.) through conditioning circuits. It requires the conversion of analog signals into digital signals supported by numerical processing system. Digital signals are obtained by sampling data at any given time, the analog signals and convert these values as numerical one through analog digital converters. Virtual instruments can be a program written in the LabVIEW or in other programming languages.

USV.FIM.MR.DS.05.02
Medical equipment (Autumn/3)
3 hours per week, 28C/14L: 14 weeks/ 7th semester, ECTS credits 4
Introduction; parameters of medical devices and classifications; elements of medical instruments; cell potential; electrodes, sensors and transducers for medical equipment; equipment for cardiac investigation and treatment; cardiac valves ; equipment for investigation and treatment of respiratory system; surgical instruments; anaesthesia equipment, imaging: radiography, ultrasonic, MRI.

USV.FIM.MR.DD.05.03
Automatic Systems – Fundamentals (Autumn/3)
3 hours per week 28C/14L: 14 weeks/5th semester, ECTS credits: 3

USV.FIM.MR.DD.05.04
Architecture of numerical computers (Autumn/3)
3 hours per week; 14 weeks / 5th semester: 28C/14L; ECTS credits: 4
With the increasing use of numerical control of mechanical systems, it is necessary for mechanical engineering students to have a basic knowledge of microcontrollers and microprocessors and their associated interfaces with mechanical world. The course subject content covers the basics of microcontroller and microprocessor: the CPU, memory, I/O, buses subsystems, basic operation of a microprocessor system (fetch and execute cycle), differences between microcontroller and microprocessor, the architecture of some typical microcontrollers (ATmega16, PIC16F877, INTEL 8051) and their features (block diagram and definitions of the pins, I/O port structure, memory organization, general purpose RAM, bit addressable RAM, register bank, special function registers, external memory, memory space mapping and decoding, bus control signals timing).

USV.FIM.MR.DD.05.05
Digital Electronics (Autumn/3)
3 hours per week 28C/14L: 14 weeks/5th semester, ECTS credits: 3
This course covers combinational and sequential logic circuits. Topics include number systems, Boolean algebra, logic families, medium scale integration (MSI) and large scale integration (LSI) circuits and other related topics. Upon completion, students should be able to construct, analyze, verify, and troubleshoot digital circuits using appropriate techniques and test equipment.

USV.FIM.MR.DS.05.06
Robotics (Autumn/3)
4 hours per week; 14 weeks /7th semester: 28C/28L; ECTS credits 5

USV.FIM.MR. DD.05.07
Mechanisms and machine elements (2) (Spring/3)
4 hours per week 28C/14S/14L: 14 weeks/5th semester, ECTS credits: 4
This is the second part of machine elements course, concerning modelling, design, integration and best practices for use of machine elements such as shafts, hydrodynamic, hydrostatic and rolling bearings, keys, pins, crotlers assembly methods and springs. For each type of elements a brief description, stresses, failure, recommended materials and calculus criteria is presented. Basics on classical design of mechanical parts, such as statics and dynamics of mechanical elements, failure criteria, tribology elements, reliability, mechanical choice criteria and so on are also covered. These are reinforced via laboratory experiences and a substantial design project wherein students design a two steps (belts and gears) mechanical transmission system.

USV.FIM.MR. DD.05.08
Mechanisms and machine elements 2 – project (Spring/3)
2 hours per week; 14 weeks /5 th semester:28P; ECTS credits: 2
Students must design a two stage (belts and gears) mechanical transmission system. Starting from a given material, several steps are followed so that the gear outputs an imposed torque and speed. The designed speed reducer must use single stage spur gears reducer and an external V belt transmission. The belt transmission, gears geometry and shafts dimensions are calculated. The shafts resistance to fatigue, vibration and strain are verified. All the gear’s transmission elements must be calculated. The reducer gear housing must be designed and the thermal regime is verified. The projects must contain technical drawings for V belt pulleys, spur gears, shafts, gear housing, as well as for the speed reducer assembly.
USV.FIW.MR. DS.06.10
Experimental techniques (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
General problems on research. Getting metrology. Measurement experiment results. Classic and modern experiments; Classical methods for planning experiments; Complete factorial plans; Experimental plans and mathematical modeling of the studied phenomenon; Modern methods of experimental planning; Analysis of results variance; Conclusions on the study of a phenomenon / product through experimental plans method; Acquisition of data for the study of industrial phenomenon; Experimental plans and industrial practice; Roughness measurement and dependency factors or Length measurement and dependency factors; Mathematical modeling of practical applications; Conclusions.

USV.FIM. MR.DD.06.10
Power Electronics (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
Overview of the semiconductor devices that are used in power electronic devices. Diodes, Schottky Diodes, Thyristors, Power Bipolar Junction Transistors, MOSFETs, Insulated Gate Bipolar Transistors. Operation of circuits used in power electronic devices: Voltage Stabilizer, Switching DC Voltage Source, Rectifiers, Uncontrolled Single-Phase Rectifiers, Uncontrolled and Controlled Rectifiers, Inverters, Choppers, Modulation Strategies, Pulse Width Modulation. Applications for power electronics, including motor drives, mechatronic applications.

USV.FIM. MR.DS.06.11
Manufacturing technologies and equipments (Spring/3)
3 hours per week; 14 weeks / 5th semester: 28C/14L; ECTS credits: 3
This course introduces students to the manufacturing industry by giving them knowledge about the design and fabrication of mechanical products using a variety of processes, tools, and equipments. Provides basic knowledge of various manufacturing processes and materials. The course covers processes involving cutting tools, machine tools, measuring, and inspection and provides knowledge of manufacturing procedures and industry standard roles in manufacturing settings.

USV.FIM. MR.DD.06.12
Mechanical System Dynamics (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3
Notion of mechanical and mechatronical system; inertial characteristics of a systems; mass and inertia matrix tensor; degree of freedom of a system; systems with finite and infinite degree of freedom; kinematical parameters of a dynamical systems; velocity and angular velocity; dynamical characteristics; force and torque; work, energy and power; component of mechanical systems; actuators; dumping elements; elastic elements; characteristics of electrical systems; Newton-Euler motion equations for a rigid body; Lagrange’s Equation of second kind; vibrations in mechanical system; mathematical model of a mechanical system; ordinary linear differential equation; solution of homogenous and non-homogenous ordinary differential equation; solution of linear differential equation with constant coefficient, characteristic equation; Laplace transfrom; transfer function; dynamic stability; poles and stability criteria.

USV.FIW.MR.DD.06.13
Computer Aided Graphics (Spring/3)
3 hours per week; 14 weeks / 6th semester: 14C/28L; ECTS credits: 3
Introduction to AutoCAD. Drawing convention, Interfacing with AutoCAD, Drawing objects, Creating a new drawing, Drawing, editing, hatching, dimensioning commands, 2D applications.

USV.FIM. MR.DD.06.14
Drive Systems (Spring/3)
2 hours per week; 14 weeks / 6th semester: 14C/14L; ECTS credits: 2
This course introduces basic concepts of drive systems, different types of drives used in mechatronics and the main aspects taken into account in the choice of drive systems based on areas of use, and applications. The hydraulic section covers introductory elements on fluid power, hydraulic systems and components, as well as basic fluid-related measurements. Hydraulic circuit designs including electro-hydraulics circuits are also covered. In the pneumatics section, students will be able to approach basic pneumatic problems using gas laws, as well as to identify and explain the role of various pneumatic components. For the pneumatic circuit design section, students will be able to design and analyze basic and multiple pneumatic circuits as well as electro-pneumatic circuits. The electric drives section covers servo and stepper motors.

USV.FIM. MR.DD.06.15
Practical training (Autumn/3)
90 hours / 6th semester: ECTS credits: 4
Machining precision technologies; assembly technologies of mechatronical elements; measuring and control devices; measurement accuracy improvements.

USV.FIM. MR.DS.05.16
Biomechanics (Autumn/3)
3 hours per week; 14 weeks / 5th semester: 28C/28L; ECTS credits: 5
Laws of motion; Skeletal tree; Bone, cartilage and ligaments; Joints of the human body; Contact Forces in Static Equilibrium; Leavers; Muscle Force in Motion; Moment Arm and Joint Angle; Center of gravity; General dynamics theorems; Conservation of linear momentum; Center of mass and its motion; bodies in planar motion; Angular velocity, angular acceleration; Angular momentum; Conservation of angular momentum; Instantaneous center of rotation; Applications to human body dynamics.

MECHATRONICS 4th year

USV.FIM.MR.DID.07.01
Robotics 2 (Autumn/4)
4 hours per week; 14 weeks / 7th semester: 28C/28L; ECTS credits: 5

USV.FIM. MCT.DID.07.02
Equipments and Manufacturing Technologies in
Mechatronics (Autumn/4)
3 hours per week; 14 weeks /7th semester: 28C/14L; ECTS credits: 3

USV.FIM.MR.DS.07.04
Automotive mechatronics (Autumn/4)
4 hours per week; 14 weeks /7th semester: 28C/28L; ECTS credits: 5

USV.FIM.MR.DD.07.05
Programmable machines (Autumn/4)
4 hours per week; 14 weeks /7th semester: 28C/28L; ECTS credits: 5
The course offers an introduction to PLCs (Programmable Logic Controllers). Topics include various processor units, numbering systems, memory organization, relay type devices, timers, counters, data manipulators, and programming. Programming principles, Ladder Logic and Grafcet diagrams are also covered. PLCs are currently employed in multiple industrial and commercial processes. Mechatronics engineers can be expected to be able to install, troubleshoot, program & modify PLCs and PLC controlled systems. The intent of this course is to have students develop the basic technician level skills required by industry.

USV.FIM.MCT.DS.07.13
RELIABILITY AND MAINTENANCE (Autumn/4)
3 hours per week; 14 weeks /1st semester (autumn): 28C/14S; ECTS credits: 3
Subject descriptive: This course familiarizes the students with the concept of reliability, maintainability and availability and their importance when dealing with the conception and exploitation of machine-tools and other technical equipments. It presents the reliability, maintainability and availability concepts, elements of probability theory and its application in reliability, reliability and reliability characteristics, reliability tests, technical issues of reliability theory, maintainability and maintainability characteristics, availability and availability characteristics, etc…

USV.FIM.MR.DS.07.15
Smart materials and structures (Autumn/4)
3 hours per week; 14 weeks/8th semester; 28C/28L; ECTS credits: 5
Piezoceramics, Piezopolymers, Electrostrictive ceramics, Magnetostrictive, Shape memory alloys, Electro rheological fluids, Magneto rheological fluids, Actuators and sensors

USV.FIM.MR.DD.08.08
Mechatronic Systems (Spring/4)
4 hours per week; 14 weeks /8st semester: 28C/28L; ECTS credits: 4
According to the original definition of mechatronics that the Yasakawa Electric Company proposed and the definitions that have since appeared, many engineering products designed and manufactured in the last thirty years that integrate mechanical and electrical systems can be classified as mechatronic systems. Discipline aims at combining the knowledge gained in mechatronics basis, electronics and mechanical engineering, in order to obtain mechatronic systems and application development complex interdisciplinary. In the discipline “Mechatronic Systems” will be studied what are the main categories of mechatronic systems and how to simulate or realize them. The knowledge gained can be applied in the design or operation of mechatronic systems.

USV.FIM.MR.DS.08.07
Technologies for numerically controlled machines (Spring/4)
4 hours per week; 14 weeks /8st semester: 28C/28L; ECTS credits: 4
Focuses on application of the Computer Numerical Control (CNC) systems used in today's manufacturing environment. This course teaches students the fundamentals of computer numerical control (CNC) machining. Students will learn how to program a CNC machine using manual G/M code programming.

Ştefan cel Mare University of Suceava, România
Faculty of Mechanical Engineering
Mechatronics and Management

<table>
<thead>
<tr>
<th>Field of study</th>
<th>Mechanical Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the educational program</td>
<td>Mechanical Engineering</td>
</tr>
</tbody>
</table>

Mechanical Engineering 1st year

USV.FIM.IM.DF.01.01
Mathematical analysis (Autumn/1)
4 hours per week; 14 weeks/1st semester; 28C/28S; ECTS credits: 5
Basics of calculus: infinite series, differentiation and partial derivatives of functions of several variables, applications of differentiation, multiple integrals, line integrals, surface integrals, differential equations of first order.

USV.FIM.IM.DF.01.02
Algebra, Analytical and Differential Geometry (Autumn/1)
4 hours per week; 14 weeks / 1st semester: 28C/28S; ECTS

USV.FIM.IM.DC.01.08
Physical education (1) (Autumn/1)
1 hour per week; 14 weeks /1st semester: 14S; ECTS credits: 1
Maintaining optimal health status of students and increase their adaptability to environmental factors; Harmonization of their own physical development and prevention of possible deviations from the installation; Expansion of its own fund basic motor skills; basic applicative and basic sports ones and development of motor skills related; Independent practice of physical exercises; games and various sports; The expression of team spirit and competition; according to a system of rules accepted.

USV.FIM.IM.DC.01.09
English 1 (Autumn/1)
2 hours per week, 28S:14 weeks / 1st semester; ECTS credits: 2
Multiple general assessment test; An overview of main grammar issues, based on TOEFL and Cambridge tests - vocabulary reminder (at least 14 seperate seminars); Model Test 5, TOEFL. Essential English; Structure and written expression; Vocabulary and Reading Comprehension (False friends approach); TOEFL Essential English 6 – transition to technical terms; TOEFL Test 7 – Tenses; Science and Technology; The Importance of the Research Theorist; The impact of technology on everyday life.

USV.FIM.IM.DD.02.10
Mechanics 1 (Spring/1)
4 hours per week; 14 weeks / semester: 28C/14S/14L; ECTS credits: 5
Vectors algebra; Forces: Statics of particles; Equivalent systems of forces; Equilibrium of rigid bodies; Moment of a force about a point and about an axis; Reduction of a system of forces to a wrench; Friction; Centers of gravity; Kinematics of particles; Relative motion; Kinematics of rigid bodies; Translation; Rotation about a fixed axis; Plane motion; Motion about a fixed point; General motion.

USV.FIM.IM.DD.02.11
Science and Engineering of Materials (2) (Spring/1)
4 hours per week; 14 weeks /2nd semester: 28C/28L; ECTS credits: 5

USV.FIM.IM.DF.02.12
Physics (Spring/1)
4 hours per week; 14 weeks / 2nd semester: 28C/14S/14L; ECTS credits: 5
Overview of the main natural phenomena in terms of: mechanics, electromagnetism, optics, atomic physics and, quantum mechanics. Each domain shows the student’s theoretical and experimental method to understand the main phenomena for the mechanical engineer.

USV.FIM.IM.DF.02.13
Numerical Methods (Spring/1)
4 hours per week; 14 weeks /2nd semester: 28C/28L; ECTS
The course elaborates on the following main topics: basic notions in error theory, algorithms and representation of algorithms, numerical methods for solving algebraic and transcendental equations, numerical solution of systems of linear equations, numerical approximation of real functions, Lagrange interpolation, Newton interpolation polynomial, spline interpolation, regression approximation, derivation and numerical integration, numerical solution of differential equations, experimental data processing, implementation of algorithms in Mathcad.

USV.FIM.IM.DC.02 14

Communication (Spring/1)
2 hours per week; 14 weeks / 2nd semester: 28S; ECTS credits: 2

Objectives of effective Communication; Barriers in Communication; Metacommunication - nonverbal communication; Message planning; Intra C, inter C, group C; and mass C; Communication as a transactional process; Negotiation and manipulative techniques; The interview, the CV/resume; Frequent mistakes in today's vernacular as a result of borrowings

USV.FIM.IM.DF.02.15

Technical drawing and infographics 1 (Spring/1)
4 hours per week; 14 weeks / 2nd semester: 28C/42L; ECTS credits: 5

Drawing elements, Types of drawings, Projection, Sectioning, Dimensioning, Detail drawing, Assembly drawing

USV.FIM.IM.DC.02.16

Physical education (2) (Spring/1)
1 hour per week; 14 weeks / 2nd semester: 14S; ECTS credits: 1

Maintaining optimal health status of students and increase their adaptability to environmental factors; Harmonization of their own physical development and prevention of possible deviations from the installation; Expansion of its own fund basic motor skills, basic applicative and basic sports ones and development of motor skills related; Independent practice of physical exercises, games and various sports; The expression of team spirit and competition, according to a system of rules accepted.

USV.FIM.IM.DC.02.17

English 2 (Spring/1)
2 hours per week; 14 weeks / 2nd semester: 28S; ECTS credits: 2

Capability to explain and interpret ideas, projects; Build-up of pros and cons in a debate; Identifying the logical sequence among a text parts and the ability to extract the relevant information from that text; Accurate reception of oral or written messages in various communicational stances. Accurate message output, both written and oral, regarding technical issues; Identifying key elements in a standard speed message; Building interaction in both written and oral communication, building the ability to defend an issue clearly and convincingly in sundry circumstances regarding familiar scientific and technical topics; Transfer and mediation of oral or written messages on diverse topics.

Mechanical Engineering 2nd year

USV.FIM.IM.DF.03.01

Special Mathematics (Autumn/2)
3 hours per week; 14 weeks / 3rd semester: 28C/14S; ECTS credits: 4

USV.FIM.IM.DD.03.02

Mechanics 2 (Autumn/2)
4 hours per week; 14 weeks / semester: 28C/14S/14L; ECTS credits: 4

Moments of inertia; Radius of gyration; Parallel-axis theorem; Principal axes and principal moments of inertia; Dynamics of particles: Equations of motion, Linear momentu, Angular momentum, Work and kinetic energy; Dynamics of systems of particles; Dynamics of rigid bodies: Angular momentum; Linear momentum theorem; Angular momentum theorem; Kinetic energy ad work theorem; motion of a rigid body in three dimensions; Euler’s equations of motion; Motion of a gyroscope; Principle of virtual work; D’Alembert’s principle

USV.FIM.IM.DD.03.03

Strength of materials (1) (Autumn/2)
4 hours per week; 14 weeks / 3rd semester: 28C/28S; ECTS credits: 4

USV.FIM.IM.DD.03.04

Mechanisms (1) (Autumn/2)
4 hours per week; 14 weeks / 3rd semester: 28C/14S/14L; ECTS credits: 5

Mobility; degree of freedom, classification of mechanisms; planar, spherical, and spatial mechanisms; positional, velocity, and acceleration analysis; lower joint mechanisms vectorial loop method for planar kinematics; Hartenberg-Denavit convention; kinematics of spatial linkages; cam mechanisms; displacements diagram, characteristic geometrical parameters; cam profile tracing; pressure angle; minimum radius-of-curvature; spur gears, fundamental law of toothed gearing; the manufacture of gear teeth; interference and undercutting; contact ratio; helical gears, contact of helical gear teeth; herringbone gears; crossed-axis helical gear; bevel gears; crown and face gears; hypoid gears; basics of worm and worm gears; mechanisms train.

USV.FIM.IM.DD.03.05

Tolerances and dimensional control (Autumn/2)
3 hours per week; 14 weeks / 3rd semester: 28C/14L; ECTS credits: 4

This course familiarizes the students with the prescription and control of the dimensional and geometrical precision of the machine elements. It presents the dimensional and geometrical precision, dimensions’ chains, basic notions concerning the dimensional and geometrical measurements and control, statistical control methods.

USV.FIM.IM.DD.03.06

Materials Technology (Autumn/2)
3 hours per week; 14 weeks / 3rd semester: 28C/14L; ECTS credits: 4
Technological process; Alloy casting. Materials plastic deformation; Metallic materials welding; Cutting metal materials by thermal processes. Ceramic material processing technologies; Plastics processing technologies; Composite materials manufacturing technology; Nonconventional technologies.

USV.FIM.IM.DF.03.07
Technical drawing and infographics 2 (Autumn/2)
4 hours per week; 14 weeks / 3rd semester: 28C/28L; ECTS credits: 4
Introduction to AutoCAD, Drawing convention, Interfacing with AutoCAD, Drawing objects, Creating a new drawing, Drawing, editing, hatching, dimensioning commands, 2D applications

USV.FIM.IM.DC.03.08
Physical education (3) (Autumn/2)
1 hour per week; 14 weeks / 3rd semester: 14S; ECTS credits: 1
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using operational means to organize your lesson to influence selective locomotor training and the athletic exercises of the body for exercise.

USV.FIM.IM.DD.04.10
Mechanisms (1a) (Spring/2)
2 hour per week; 14 weeks / 4th semester: 28P; ECTS credits: 2
Applying of geometrical method for kinematical analysis of a planar mechanism; velocity and acceleration polygon methods, vectors loop method for planar kinematics; design of cam in a mechanism with imposed motion law of the follower.

USV.FIM.IM.DD.04.11
Strength of materials (2) (Spring/2)
5 hours per week; 14 weeks / 4th semester: 28C/28S/14L; ECTS credits: 4

USV.FIM.IM.DD.04.12
Thermotechnics (Spring/2)
4 hours per week; 14 weeks / 4th semester: 28C/28S/28L; ECTS credits: 6

USV.FIM.IM.DD.04.13
Fluids mechanic (Spring/2)
4 hours per week; 14 weeks / 4th semester: 28C/14L/14S; ECTS credits: 4
Introduction and fundamental concepts, Fluid statics, Fundamental concepts used in fluid flow analysis, The energy equation, Inviscid incompressible fluid flow, Inviscid compressible flow, The momentum equation, Dimensional analysis and similitude, Incompressible viscous flow, Definition and classification of hydro-pneumatic machines, Efficiency of hydro-pneumatic machines, The basic equation of turbo-machinery, Pumps and hydraulic turbines, Theoretical and experimental determination of the energy characteristic curves.

USV.FIM.IM.DD.04.14
Electrotechnics and electric machines and drives (Spring/2)
3 hours per week; 14 weeks / 4th semester: 28C/14L; ECTS credits: 4
Periodic electrical signals, Electrical circuits, Laws, theorems and methods of analysis of electrical circuits, Magnetic circuits, Electrical circuit analysis, Electrical transformer, Asynchronous electric machine, DC electric machine, Synchronous electric machine.

USV.FIM.IM.DD.04.15
Applied electronics (Spring/2)
3 hours per week; 14 weeks / 4th semester: 28C/14L; ECTS credits: 3
Introduction in Electronics; Concepts of semiconductor physics; Pn junction; Semiconductor diodes; Types of diodes; Bipolar transistor; Field Effect Transistors; MOS transistor; Other devices with junctions; Optoelectronic semiconductor devices; Regime of switching semiconductor devices; Diode Circuits; Amplifiers; Reaction in amplifiers; Harmonic oscillators

USV.FIM.IM.DC.04.16
Physical education (4) Spring/2
1 hour per week; 14 weeks / 4th semester: 14S; ECTS credits: 1
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using operational means to organize your lesson to influence selective locomotor training and the athletic exercises of the body for exercise.

Mechanical Engineering 3rd year

USV.FIM.IM.DD.05.01
Machine Elements 1 (Autumn/3)
4 hours per week; 14 weeks / 5th semester: 28C/14L/14S; ECTS credits: 4
This is the first part of machine elements course, concerning modelling, design, integration and best practices for use of machine elements such as shafts, hydrodynamic, hydrostatic and rolling bearings, keys, pins, cotters assembly methods and springs. For each type of elements a brief description, stresses, failure, recommended materials and calculus criteria is

ECTS credits: 4

Thermotechnics

USV.FIM.IM.DF.03.07
Technical drawing and infographics 2 (Autumn/2)
4 hours per week; 14 weeks / 3rd semester: 28C/28L; ECTS credits: 4
Introduction to AutoCAD, Drawing convention, Interfacing with AutoCAD, Drawing objects, Creating a new drawing, Drawing, editing, hatching, dimensioning commands, 2D applications

USV.FIM.IM.DC.03.08
Physical education (3) (Autumn/2)
1 hour per week; 14 weeks / 3rd semester: 14S; ECTS credits: 1
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using operational means to organize your lesson to influence selective locomotor training and the athletic exercises of the body for exercise.

USV.FIM.IM.DD.04.10
Mechanisms (1a) (Spring/2)
2 hour per week; 14 weeks / 4th semester: 28P; ECTS credits: 2
Applying of geometrical method for kinematical analysis of a planar mechanism; velocity and acceleration polygon methods, vectors loop method for planar kinematics; design of cam in a mechanism with imposed motion law of the follower.

USV.FIM.IM.DD.04.11
Strength of materials (2) (Spring/2)
5 hours per week; 14 weeks / 4th semester: 28C/28S/14L; ECTS credits: 4

USV.FIM.IM.DD.04.12
Thermotechnics (Spring/2)
4 hours per week; 14 weeks / 4th semester: 28C/28S/28L; ECTS credits: 6

USV.FIM.IM.DD.04.13
Fluids mechanic (Spring/2)
4 hours per week; 14 weeks / 4th semester: 28C/14L/14S; ECTS credits: 4
Introduction and fundamental concepts, Fluid statics, Fundamental concepts used in fluid flow analysis, The energy equation, Inviscid incompressible fluid flow, Inviscid compressible flow, The momentum equation, Dimensional analysis and similitude, Incompressible viscous flow, Definition and classification of hydro-pneumatic machines, Efficiency of hydro-pneumatic machines, The basic equation of turbo-machinery, Pumps and hydraulic turbines, Theoretical and experimental determination of the energy characteristic curves.

USV.FIM.IM.DD.04.14
Electrotechnics and electric machines and drives (Spring/2)
3 hours per week; 14 weeks / 4th semester: 28C/14L; ECTS credits: 4
Periodic electrical signals, Electrical circuits, Laws, theorems and methods of analysis of electrical circuits, Magnetic circuits, Electrical circuit analysis, Electrical transformer, Asynchronous electric machine, DC electric machine, Synchronous electric machine.

USV.FIM.IM.DD.04.15
Applied electronics (Spring/2)
3 hours per week; 14 weeks / 4th semester: 28C/14L; ECTS credits: 3
Introduction in Electronics; Concepts of semiconductor physics; Pn junction; Semiconductor diodes; Types of diodes; Bipolar transistor; Field Effect Transistors; MOS transistor; Other devices with junctions; Optoelectronic semiconductor devices; Regime of switching semiconductor devices; Diode Circuits; Amplifiers; Reaction in amplifiers; Harmonic oscillators

USV.FIM.IM.DC.04.16
Physical education (4) Spring/2
1 hour per week; 14 weeks / 4th semester: 14S; ECTS credits: 1
In practical work find content specific learning units gymnastics, athletics, team sports. From basic gymnastics using operational means to organize your lesson to influence selective locomotor training and the athletic exercises of the body for exercise.

Mechanical Engineering 3rd year

USV.FIM.IM.DD.05.01
Machine Elements 1 (Autumn/3)
4 hours per week; 14 weeks / 5th semester: 28C/14L/14S; ECTS credits: 4
This is the first part of machine elements course, concerning modelling, design, integration and best practices for use of machine elements such as shafts, hydrodynamic, hydrostatic and rolling bearings, keys, pins, cotters assembly methods and springs. For each type of elements a brief description, stresses, failure, recommended materials and calculus criteria is
presented. These are reinforced by a substantial design project wherein students design a manual screw presses for bearing extraction.

USV.FIM.IM.DD.05.02
Machine Elements 1a - Project (Autumn/3)
2 hours per week; 14 weeks /5th semester: 28P; ECTS credits: 2

The project thematic proposes students to design a manual screw press for bearing extraction from shafts. Starting from a given bearing, several design stages are covered. The presses screw is first designed, followed by an axial bearing meant to reduce friction between the screw tip and the shaft end, the nut, the presses cross beam and the extractor arms. Several other driving, coupling and safety elements are also designed, such as the crank, bolts and safety bracket. At the end, based on the dimensioning and verification calculus, technical drawings are made for each of the studied machine elements as well as for the presses assembly.

USV.FIM.IM.DD 05 05
Thermal treatments (Autumn/3)
3 hours per week; 14 weeks / 5th semester: 28C/14L; ECTS credits: 4

USV.FIM.IM.DD.05.06
The basics of computer assisted design (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L/14P; ECTS credits: 4

Introduction to AutoCAD, Drawing convention, Interfacing with AutoCAD, Drawing objects, Creating a new drawing, Drawing, editing, hatching, dimensioning commands, 2D applications

USV.FIM.IM.DD.06.08
Machine Elements 2 (Spring /3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3

This is the second part of machine elements course, concerning basics on classical design of mechanical parts, such as statics and dynamics of mechanical elements, failure criteria, tribology elements, reliability, mechanical choice criteria and so on. Also elements of mechanical transmissions construction and design (gears, belts transmissions, chain and belts variators, friction variators, chain transmission) are also presented.

USV.FIM.IM.DD.06.09
Machine Elements 2a - Project (Spring /3)
2 hours per week; 14 weeks /6th semester: 28P; ECTS credits: 2

Students must design a two stage (belts and gears) mechanical transmission system. Starting from a given material, several steps are followed so that the gear outputs an imposed torque and speed. The designed speed reducer must use single stage spur gears reducer and an external V belt transmission. The belt transmission, gears geometry and shafts dimensions are calculated. The shafts resistance to fatigue, vibration and strain are verified. All the gear’s transmission elements must be calculated. The reducer gear housing must be designed and the thermal regime is verified. The projects must contain technical drawings for V belt pulleys, spur gears, shafts, gear housing, as well as for the speed reducer assembly.

USV.FIM. IM. DD.06.11
Mechanical vibrations (Spring/3)
3 hours per week; 14 weeks/6-th semester: 28C/14L, ECTS credits: 3

USV.FIM. IM.DD.06.14
Hydraulic and pneumatic actuation systems (Spring/3)
3 hours per week; 14 weeks / 6th semester: 28C/14L; ECTS credits: 3

This course introduces basic concepts of hydraulic and pneumatic drives, and the main aspects taken into account in the choice of drive systems based on areas of use, and applications. The hydraulic section covers introductory elements on fluid power, hydraulic systems and components, as well as basic fluid-related measurements. Hydraulic circuit designs including electro-hydraulics circuits are also covered. In the pneumatics section, students will be able to approach basic pneumatic problems using gas laws, as well as to identify and explain the role of various pneumatic components. For the pneumatic circuit design section, students will be able to design and analyse basic and multiple pneumatic circuits as well as electro-pneumatic circuits.

USV.FIM. IM.DD.06.16
Practical training (Spring/3)
90 hours 3 weeks / 6th semester; ECTS credits: 4

Practical activities enable the student to put into practice the theory and/or skills they are studying, often in a practical environment: field work, work placements, presentations, working in laboratories and workshops. Practical sessions allow learners to: demonstrate and extend their skills; collect specimens; carry out experiments; demonstrate their subject knowledge; apply theory in practice; demonstrate their awareness in applying health and safety regulations / Practical activities on specific aspects on industrial engineering in different institutions/companies. Solving specific problems related with industrial engineering.

USV.FIM.IM.S.06.19
Biomechanics (Spring/3)
4 hours per week; 14 weeks / semester: 28C/14L/14P; ECTS credits: 4
Laws of motion; Skeletal tree; Bone, cartilage and ligaments; Joints of the human body; Contact Forces in Static Equilibrium; Levers; Muscle Force in Motion; Moment Arm and Joint Angle; Center of gravity; General dynamics theorems; Conservation of linear momentum; Center of mass and its motion; bodies in planar motion; Angular velocity, angular acceleration; Angular momentum; Conservation of angular momentum; Instantaneous center of rotation; Applications to human body dynamics.

Mechanical Engineering 4th year

USV.FIM.IM.IV DS.08.10.
Experimental methods in mechanical engineering. (Spring/4) 4 hours per week; 14 weeks /8th semester: 28C/28L; ECTS credits: 3.
The course is intended to give an advanced view on the general aspects of research in engineering. The students will be introduced to the existing research methods, experimental design and planning, to advance data analysis and statistical interpretation as well as regarding the dissemination of the results. The course is not a laboratory one, though, in order to facilitate the understanding, numerous practical examples and experimental data related to engineering questions are used throughout the course.

USV.FIM.IM.IV DS.08.18.
Automatic control. (Spring/4) 3 hours per week; 14 weeks /8th semester: 28C/14L; ECTS credits: 3. Automatic control is a must on most of the engineering systems, assuring not only the functionality but also the safety in exploitation. Examples can be found everywhere from medical to industrial applications. Moreover, an increased interest has been observed in the automation of mobile robots (eg. autonomous cars and drones) and of the industrial production lines and processes. This course introduces the principles of automatic control from the simple systems to complex dynamical systems. Upon completion the student will understand the principle of the automation control and how to use some of the industry standards such as PID (Proportional, Integral, and Derivative) controllers as well as the modern automation controllers based on fuzzy logic and machine learning.